Magnetic nanoparticles for space applications

Author:

Sharma S. K.,Kumar Ravi,Dolia S. N.,Siva Kumar V. V.,Singh Mahavir

Abstract

ABSTRACTRadiation resistant ferrite materials have potential applications in space station. Mg-Mn spinel ferrite was choosen for this study because of its radiation resistance and potential for use as an insulator in radiation environments. The radiation damage expected in these environments can be quickly and conveniently simulated using ion irradiation. The results of swift heavy ion irradiation induced modifications in the magnetization behavior of the Mg-Mn ferrite nanoparticles have been investigated using 100 MeV Ni8+ ion irradiation. To ensure the singlephase spinel structure of the system powder x-ray diffraction patterns has been performed. The powder samples were irradiated at three different fluences in the range 1×1012-5×1013 ions/cm2. Isothermal dc magnetization studies have been performed using SQUID and vibration sample magnetometer (VSM) on the pristine as well as on the irradiated samples at 20 K and 300 K. With irradiation saturation magnetization remains almost constant with ions irradiation. The coercivity values of the materials decreased about 5% with the fluence 1×1013 ions/cm2 as compare to the pristine nanoparticles. The results have been explained on the basis of the existence of surface defects produced by swift heavy ions, which generate orientational disorder of surface spins. The behavior of saturation magnetization with irradiations makes these nanoparticles suitable for memory devices in the space research.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3