Author:
Lin C. H.,Kuo H. C.,Lu Y.,Shen H.,Pamulapati J.,Dutta M.,Cheng J. Y.,Ren F.,Kuo J. M.
Abstract
AbstractResearch of the strain effect on semiconductors and their heterostructures has generated increasing interests due to its important device applications. We have developed a eutectic bonding technique to create in-plane anisotropic strain in GaAs/AlGaAs multiple quantum well (MQW) thin films. MQW thin films grown on (100) GaAs substrates were bonded to (100) GaAs, (100) Si and Y-cut LiNbO3 submounts with a Au/Sn eutectic alloy. The bonding materials consist of Au/Sn multilayer (80 wt% Au and 20 wt% Sn; 0.95μm) with a Cr (500Å) adhesion layer. The bonding process was optimized by carefully choosing the annealing conditions. After bonding, the substrates of the MQWs were removed by wet chemical etching. The in-plane strain was induced in MQW thin film due to the different thermal expansion between the thin film and submount. The strain was characterized using X-ray rocking curve. The microstructures of bonding interfaces and MQW thin films were examined by scanning electron microscope(SEM) and cross-section transmission electron microscope (XTEM). This bonding technique can be used for many new device applications which take the advantage of in-plane strain, as well as for device integration.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献