Aggregation Structure and Electro—Optical Properties of (Liquid Crystalline Polymer)/(Low Molecular Weight Liquid Crystal) Composite System

Author:

Kajiyama Tisato,Kikuchi Hirotsugu,Miyamoto Akira,Moritomi Satoru,Hwang Jenn—Chiu

Abstract

ABSTRACTA series of thin films composed of liquid crystalline polymer (LCP) and low molecular weight liquid crystal (LMWLC) was prepared by a solventcasting method or by a bar—coating method. LCPs were of mesogenic side chain type with strong or weak polar terminalgroups in the side chain portion. A mixture of smectic LCP (LCP with side chain of strong polar end) and nematic LMWLC formed a smectic phase in a LCP weight fraction range above 50 %. Also, a mixture of nematic LCP (LCP with side chain of weak polar end) and nematic LMWLC with strong polar group induced a new smectic phase in a LCP molar fraction range of 20–80 %. Reversible and bistable electro-optical effects based on light scattering were recognized for a smectic phase of a binary composite composed of LCP and LMWLC. A light scattering state caused by many fragmented smectic lamellae appeared in the case of application of an a.c. electric field below a threshold frequency (∼l Hz). Furthermore, application of a 100 Vp—p a.c. field of 1 kHz made the transmission light intensity increased to 94 % within a few seconds. The optical heterogeneity in asmectic layer composed of the side chain group of LCP was caused by the difference of twoforces based on both dielectric anisotropy of the side chain and electrohydrodynamic motion of the main chain. Since application of a low frequency electric field causes an ioniccurrent throughout the mixture film, it is reasonable to consider that an induced turbulent flow of main chains by an ionic current collapsed a fairly well organized large smectic layer into many small fragments, resulting in an increase in light scattering. The response speed of LCP upon application of an electric field increased remarkably by mixingLMWLC. In the case of a smectic mesophase, turbid and transparent states remained unchanged as it was, even though after removing an electric field.1Such abistable and reversiblelight switching driven by two different frequencies of electric field could be newly realized by both characteristics of turbulent effect of a wellorganized large smectic layer of LCP and rapid response of LMWLC. We believe that the LCP/LMWLC mixture system is promissing as a novel type of “light valve” exhibiting memory effect (bistable light switching).

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3