Cellulose micro/nanocrystals reinforced polyurethane

Author:

Marcovich N.E.,Auad M.L.,Bellesi N.E.,Nutt S.R.,Aranguren M.I.

Abstract

Nano- and micron-sized cellulose crystals were prepared and utilized as reinforcements for polyurethane composites. The cellulose crystals obtained from microcrystalline cellulose (MCC) were incorporated into a polar organic solvent, dimethylformamide (DMF), and ultrasonicated to obtain a stable suspension. The suspension was an effective means for incorporating the cellulose crystals into the polyol-isocyanate mixture, utilized to produce polyurethane composite films. The use of DMF presents an interesting alternative for the use of cellulose crystals as reinforcement of a broad new range of polymers. Moreover, the rheology of the uncured liquid suspensions was investigated, and analysis of the results indicated the formation of a filler structure pervading the liquid suspension. Besides, films were prepared by casting and thermal curing of the stable suspensions. Thermomechanical and mechanical testing of the films were carried out to analyze the performance of the composites. The results indicated that a strong filler-matrix interaction was developed during curing as a result of a chemical reaction occurring between the crystals and the isocyanate component.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3