Author:
Huang C.X.,Gao Y.L.,Yang G.,Wu S.D.,Li G.Y.,Li S.X.
Abstract
Bulk fully nanocrystalline grain structures were successfully obtained in ultralow carbon stainless steel by means of equal channel angular pressing at room temperature. Transmission electron microscopy (TEM) and high-resolution TEM investigations indicated that two types of nanostructures were formed: nanocrystalline strain-induced martensite (body-centered cubic structure) with a mean grain size of 74 nm and nanocrystalline austenite (face-centered cubic structure) with a size of 31 nm characterized by dense deformation twins. The results about the formation of fully nanocrystalline grain structures in stainless steel suggested that a low stacking fault energy is exceptionally profitable for producing nanocrystalline materials by equal channel angular pressing.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献