A critical examination of the relationship between plastic deformation zone size and Young's modulus to hardness ratio in indentation testing

Author:

Chen J.,Bull S.J.

Abstract

Existing indentation models (both analytical models and numerical analysis) show a linear relationship between δrm and H/Er, where δr and δm are the residual and maximum indentation depth, and Er and H are the reduced Young's modulus and hardness of the test material. Based on the analysis of Oliver and Pharr, a new relationship between δrm and H/Er has been derived in a different way without any additional assumptions, which is nonlinear, and this has been verified by finite element analysis for a range of bulk materials. Furthermore, this new relationship for residual depth is used to derive an analytical relationship for the radius of the plastic deformation zone Rp in terms of the residual depth, Young’s modulus, and hardness, which has also been verified by finite element simulations for elastic perfectly plastic materials with different work hardening behavior. The analytical model and finite element simulation confirms that the conventional relationship used to determine Rp developed by Lawn et al. overestimates the plastic deformation, especially for those materials with high E/H ratio. The model and finite element analysis demonstrate that Rp scales with δr, which is sensible given the self-similarity of the indentations at different scales, and that the ratio of Rp/δr is nearly constant for materials with different E/H, which contradicts the conventional view.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3