Author:
Yang Fuqian,Peng Lingling,Okazaki Kenji
Abstract
The reliability of microelectronic interconnections depends on hot deformation of solders. In this work, we studied the localized stress relaxation of Sn3.5Ag eutectic alloy using the impression testing in the temperature range of 393–488 K. By incorporating the effect of internal stress in the analysis, we obtained the strain rate-stress exponent of 6.59. The activation energy for the stress relaxation is in the range from 38.6 to 43.8 kJ/mol, which compares well with the estimated activation energy of dislocation pipe diffusion, 46 kJ/mol, in pure tin. This suggests that a single mechanism of dislocation climb limited by dislocation pipe diffusion might be the controlling mechanism for the localized stress relaxation of the Sn3.5Ag eutectic alloy.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献