Micromechanical properties of biological silica in skeletons of deep-sea sponges

Author:

Woesz Alexander,Weaver James C.,Kazanci Murat,Dauphin Yannicke,Aizenberg Joanna,Morse Daniel E.,Fratzl Peter

Abstract

The silica skeleton of the deep-sea spongeEuplectella aspergillumwas recently shown to be structured over at least six levels of hierarchy with a clear mechanical functionality. In particular, the skeleton is built of laminated spicules that consist of alternating layers of silica and organic material. In the present work, we investigated the micromechanical properties of the composite material in spicules ofEuplectella aspergillumand the giant anchor spicule ofMonorhaphis chuni. Organic layers were visualized by backscattered electron imaging in the environmental scanning electron microscope. Raman spectroscopic imaging showed that the organic layers are protein-rich and that there is an OH-enrichment in silica near the central organic filament of the spicule. Small-angle x-ray scattering revealed the presence of nanospheres with a diameter of only 2.8 nm as the basic units of silica. Nanoindentation showed a considerably reduced stiffness of the spicule silica compared to technical quartz glass with different degrees of hydration. Moreover, stiffness and hardness were shown to oscillate as a result of the laminate structure of the spicules. In summary, biogenic silica from deep-sea sponges has reduced stiffness but an architecture providing substantial toughening over that of technical glass, both by structuring at the nanometer and at the micrometer level.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3