Author:
Juliano Thomas F.,Forster Aaron M.,Drzal Peter L.,Weerasooriya Tusit,Moy Paul,VanLandingham Mark R.
Abstract
The mechanical response of living tissue is important to understanding the injury-risk associated with impact events. Often, ballistic gelatin or synthetic materials are developed to serve as tissue surrogates in mechanical testing. Unfortunately, current materials are not optimal and present several experimental challenges. Bulk measurement techniques, such as compression and shear testing geometries, do not fully represent the stress states and rate of loading experienced in an actual impact event. Indentation testing induces deviatoric stress states as well as strain rates not typically available to bulk measurement equipment. In this work, a ballistic gelatin and two styrene-isoprene triblock copolymer gels are tested and compared using both macroscale and microscale measurements. A methodology is presented to conduct instrumented indentation experiments on materials with a modulus far below 1 MPa. The synthetic triblock copolymer gels were much easier to test than the ballistic gelatin. Compared to ballistic gelatin, both copolymer gels were found to have a greater degree of thermal stability. All of the materials exhibit strain-rate dependence, although the magnitude of dependence was a function of the loading rate and testing method.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献