Rate- and depth-dependent nanomechanical behavior of individual living Chinese hamster ovary cells probed by atomic force microscopy

Author:

Zhao Minhua,Srinivasan Charudharshini,Burgess Diane J.,Huey Bryan D.

Abstract

A single elastic modulus is not sufficient for describing the mechanical behavior of a living cell due to its viscoelastic nature and heterogeneity beneath the membrane. In this paper, the nanoscale elastic and viscoelastic behavior of individual living Chinese hamster ovary (CHO-K1) cells in a physiological environment were probed by atomic force microscopy (AFM) indentations at various loading rates. Based on Hertzian fits of the force–distance curves, the apparent elastic modulus of the cells was determined and found to be a function of the loading rate as well as the indentation depth. Notably, contributions from the substrate were negligible up to 50% of the cell thickness. For increased indentation rates and depths, healthy spindle-shaped CHO-K1 cells were found to exhibit an increased change of stiffness, whereas for unhealthy oval- shaped CHO-K1 cells there was little stiffening at equivalent loading rates and depths. Furthermore, a larger hysteresis between the loading and unloading curves was observed with increasing loading rates, which was related to the viscoelastic behavior of CHO-K1 cells. This work demonstrates differences in the rate- and depth-dependent elastic behavior at the nanoscale level between healthy and unhealthy mammalian cells.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3