Author:
Sahu Ranjan K.,Ray A.K.,Das S.K.,Kailath A.J.,Pathak L.C.
Abstract
A novel microwave-assisted combustion method was used to prepare Ni powder. The method involves the combustion reaction of nickel nitrate and urea as a fuel in the microwave field. The initiation of the exothermic peak of the combustion reaction was found to vary as a function of urea content. The microwave-prepared Ni powder was characterized using x-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, thermogravimetric (TG) analysis, differential thermal analysis (DTA), and magnetic measurement. The XRD pattern revealed that the Ni powder crystallizes with the cubic phase when the molar ratio of fuel to nitrate is varied between 5:1 and 6:1. Above or below that molar ratio, NiO phase coexists as an impurity along with the Ni phase. The magnetization value of Ni measured at room temperature is 53.5 Am2/kg, which is close to the value observed for commercial Ni powder (55.0 Am2/kg). The mechanism for the formation of the Ni and NiO phase is discussed based on the infrared, TG, and DTA data. The method shows that highly pure Ni powder can be prepared using urea as a fuel and microwaves as a source of energy via the solution combustion method.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献