On the determination of reduced Young's modulus and hardness of elastoplastic materials using a single sharp indenter

Author:

Cao Yan Ping,Qian Xiu Qing,Lu Jian

Abstract

In this work, we analyzed the theoretical errors of reduced Young's modulus and hardness of materials provided by single sharp indenter algorithms. According to the analysis, two conclusions can be drawn. First, various methods that use only the indentation loading and unloading curves from a single sharp indenter and omit the effect of the strain hardening exponent own the same widths of the theoretical error bands defined here. They are WEb for reduced Young's modulus and WHb for hardness. Second, the upper-bounds, BUE and BUH, and lower-bounds, BLE and BLH, of theoretical errors of the measured reduced Young's modulus and hardness might be different for different methods. These conclusions, on the one hand, are relevant to the evaluation of various established single sharp indenter algorithms. On the other hand, they provide useful information (i.e., to optimize the theoretical error bounds) for correcting an established method and the development of new single sharp indenter algorithms. According to the conclusions, an energy-based method has been devised to determine reduced Young's modulus and hardness of materials from nanoindentation tests using a standard Berkovich or Vickers indenter (equivalent to a 70.3° cone). It has been shown that the present method owns the reasonable theoretical error bounds and can provide stable results in the presence of data errors.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3