Cadmium- and indium-doped zinc oxide by combustion synthesis using dopant chloride precursors

Author:

Yogeeswaran G.,Chenthamarakshan C.R.,de Tacconi N.R.,Rajeshwar K.

Abstract

Cadmium-doped ZnO was prepared for the first time by combustion synthesis using CdCl2 as a dopant precursor, with zinc nitrate and urea as the combustion mixture. Unlike previous studies of combustion synthesis of ZnO in the presence of an indium nitrate precursor, which resulted in (ZnO)mIn2O3 (m = 3 or 4) compound formation, In-doped ZnO was prepared by combustion synthesis in this study using an InCl3 precursor. The doped samples were compared and contrasted with undoped ZnO using scanning electron microscopy, x-ray powder diffraction, energy-dispersive x-ray analyses, and x-ray photoelectron spectroscopy. Diffuse reflectance spectroscopy showed the optical band gap of ZnO to shrink from 3.14 to 3.07 eV and 3.02 eV on Cd and In doping, respectively. Finally, the doped samples showed an improved photoelectrochemical response relative to undoped ZnO over the wavelength range from ∼300 to ∼450 nm.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3