Author:
Feldmann D.M.,Holesinger T.G.,Cantoni C.,Feenstra R.,Nelson N.A.,Larbalestier D.C.,Verebelyi D.T.,Li X.,Rupich M.
Abstract
We report a detailed study of the grain orientations and grain boundary (GB) networks in YBa2Cu3O7-δ (YBCO) films ∼0.8 μm thick grown by both the in situ pulsed laser deposition (PLD) process and the ex situ metalorganic deposition (MOD) process on rolling-assisted biaxially textured substrates (RABiTS). The PLD and MOD growth processes result in columnar and laminar YBCO grain structures, respectively. In the MOD-processed sample [full-width critical current density Jc(0 T, 77 K) = 3.4 MA/cm2], electron back-scatter diffraction (EBSD) revealed an improvement in both the in-plane and out-of-plane alignment of the YBCO relative to the template that resulted in a significant reduction of the total grain boundary misorientation angles. A YBCO grain structure observed above individual template grains was strongly correlated to larger out-of-plane tilts of the template grains. YBCO GBs meandered extensively about their corresponding template GBs and through the thickness of the film. In contrast, the PLD-processed film [full width Jc(0 T, 77 K) = 0.9 MA/cm2] exhibited nearly perfect epitaxy, replicating the template grain orientations. No GB meandering was observed in the PLD-processed film with EBSD. Direct transport measurement of the intra-grain Jc(0 T, 77 K) values of PLD and MOD-processed films on RABiTS revealed values up to 4.5 and 5.1 MA/cm2, respectively. As the intra-grain Jc values were similar, the significantly higher full-width Jc for the MOD-processed sample is believed to be due to the improved grain alignment and extensive GB meandering.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献