Pressure Assisted Crystallization of MnAl Thin Films

Author:

Fischer Gregory A.,Rudee M. Lea,Nesterenko Vitali F.,Indrakanti Sastry

Abstract

ABSTRACTThe effect of hot isostatic pressure processing (HIP) on MnAl films has been compared to vacuum annealing for the purpose of obtaining substantial amounts of tau phase MnAl in films under 200 nm. Films were deposited by dc sputtering from both MnAlNiC an MnAl targets. As-deposited films were nearly amorphous. Post deposition annealing in vacuum produced only small amounts of the ferromagnetic tau-phase in films thinner than 200 nm.In all instances, regardless of substrate and sputtering target, the use of HIP in place of vacuum annealing increased the degree of crystallinity of the samples when compared to those annealed in vacuum. For the 100 nm samples deposited from the MnAlNiC target, these changes in crystallinity were accompanied by changes in the M-H loops of the samples. MnAlNiC HIP samples had improved magnetic properties compared to those of equal thickness annealed in vacuum. The 100 nm HIP sample sputtered from the MnAl target also showed an increase in moment, though the changes were not as dramatic as those seen in the samples sputtered from the MnAlNiC target.The 50 nm films from both targets also showed a change in crystallinity when compared to vacuum annealed samples. These films, unlike the 100 nm films, had ferromagnetic properties that were no better than those of the vacuum annealed samples. This suggests that while the 2 kbar of pressure used in this study assists in the formation of tau-phase in 100 nm films, the appropriate pressure for forming tau-phase in 50 nm films is yet to be determined.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3