Crystallographic Texture and Phase Metrology During Damascene Copper Processing

Author:

Kozaczek K.J.,DeHaven P.W.,Rodbell K.P.,Malhotra S.,Kurtz D.S.,Martin R.I.,Moran P.R.

Abstract

AbstractThe rapid adoption of damascene copper technology has brought about an increased need to understand and control microstructure in the barrier and metal layers during processing. We have developed and implemented a methodology for rapidly characterizing thin film polycrystalline microstructures on 200 mm Si substrates using an X-ray diffraction (XRD) based metrology tool to measure crystallographic texture and phase in a time frame suitable for in-line applications. The acquired data can be used as a direct measure of the deposition process in terms of film quality, reproducibility and stability over time. The spatial distribution of crystallographic texture and phase can be measured on a single wafer in order to check within wafer uniformity. These same measurements can also be carried out at predetermined intervals on wafers from single deposition tools, with the results used to create a database that can be applied to process control trend charting and to the establishment of acceptance criteria. The methodology developed makes use of several novel data analysis and collection techniques, such as the use of a direct matrix transformation method to determine the orientation distribution function (ODF) from a group of truncated pole figures. Useful quantitative outputs of the ODF, such as volumetric fractions of crystallographic texture components, can be used in quantifying texture evolution within and between wafers. On-the-fly texture compensation can also be used to generate useful quantitative phase and film thickness measurements. We present the principles of operation of this metrology tool and selected examples collected in the IBM's Advanced Semiconductor Technology Center (ASTC), East Fishkill, NY.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference10 articles.

1. 4. Kurtz D.S. , Kozaczek K.J. , Moran O.R. , US patent 6301330B1 “Apparatus and method for texture analysis in semiconductor wafers” 2001.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3