Simulation of Gas Phase Clustering of Nanocrystals in Sputter Discharges

Author:

Choi Seung J.,Kushner Mark J.

Abstract

ABSTRACTThe preparation of nanocrystalline particles or clusters (sizes 1–50 nm) is of interest to the study of small systems and for use in sintering or compacting of high purity bulk materials. Recently, a method whereby these crystals can be fabricated using a sputter discharge has been reported. We have developed a computer model to simulate the formation of homogeneous (e.g., Si, Cu, Ti) gas phase clusters in these devices as precursors to larger nanocrystals. The model combines Monte Carlo and drift-diffusion algorithms to simulate the sputtering of atoms from the target, their thermalization in the buffer gas, and gas phase nucleation reactions. Densities of clusters having one to many hundreds of atoms are obtained as a function of position in the discharge. We find that the experimentally observed particle sizes cannot be explained by clustering involving solely neutral reactants due to their short residence times in the plasma. Negatively charged clusters which are trapped in the plasma have correspondingly longer residence times and most likely are responsible for the growth of large particles. Scaling laws for the growth of homogeneous clusters will be presented based on the results of the model.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3