A New Type of Cluster-Ion Source for Thin Film Deposition

Author:

Haberland Hellmut,Karrais Martin,Mall Martin

Abstract

ABSTRACTAtoms are gas discharge sputtered from a solid target. They are condensed to form clusters using the gas aggregation technique. An intense beam of clusters of all solid materials can be obtained. Up to 80 % of the clusters can be ionised without using additional electron impact ionisation. Total deposition rates vary between 1 and 1000 Å per second depending on cluster diameter, which can be varied between 3 and 500 nm. Thin films of Al, Cu, and Mo have been produced so far. For non accelerated beams a weakly adhering mostly coulored deposit is obtained. Accelerating the cluster ions this changes to a strongly adhering film, having a shiny metallic appearance, and a very sharp and plane surface as seen in an electron microscope. The advantages compared to Kyoto ICB-method are: easy control of the cluster size, no electron impact ionisation, high degree of ionisation, and sputtering is used instead of thermal evaporation, which allows the use of high melting point materials.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference6 articles.

1. Formation of metal clusters and molecules by means of the gas aggregation technique and characterisation of size distribution

2. The HeNe laser gives a good example for a high concentration of rare gas metastables in a low pressure discharge. The electronically excited He atoms transfer their energy to ground state Ne atoms, thus populating the upper laser level.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3