Author:
Haberland Hellmut,Karrais Martin,Mall Martin
Abstract
ABSTRACTAtoms are gas discharge sputtered from a solid target. They are condensed to form clusters using the gas aggregation technique. An intense beam of clusters of all solid materials can be obtained. Up to 80 % of the clusters can be ionised without using additional electron impact ionisation. Total deposition rates vary between 1 and 1000 Å per second depending on cluster diameter, which can be varied between 3 and 500 nm. Thin films of Al, Cu, and Mo have been produced so far. For non accelerated beams a weakly adhering mostly coulored deposit is obtained. Accelerating the cluster ions this changes to a strongly adhering film, having a shiny metallic appearance, and a very sharp and plane surface as seen in an electron microscope. The advantages compared to Kyoto ICB-method are: easy control of the cluster size, no electron impact ionisation, high degree of ionisation, and sputtering is used instead of thermal evaporation, which allows the use of high melting point materials.
Publisher
Springer Science and Business Media LLC
Reference6 articles.
1. Formation of metal clusters and molecules by means of the gas aggregation technique and characterisation of size distribution
2. The HeNe laser gives a good example for a high concentration of rare gas metastables in a low pressure discharge. The electronically excited He atoms transfer their energy to ground state Ne atoms, thus populating the upper laser level.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献