Author:
Demine Andrei V.,Krylova Nina V.,Polyektov Pavel P.,Shestoperov Igor N.,Smelova Tatyana V.,Gorn Valerii F.,Medvedev Gennadii M.
Abstract
ABSTRACTAt the present time the primary problem in a closed nuclear fuel cycle is the management of high level liquid waste (HLLW) generated by the recovery of uranium and plutonium from spent nuclear fuel. Long-term storage of the HLLW, even in special storage facilities, poses a real threat of ecological accidents. This problem can be solved by incorporating the radioactive waste into solid fixed forms that minimize the potential for biosphere pollution by long-lived radionuclides and ensure ecologically acceptable safe storage, transportation, and disposal. In the present report, the advantages of a two-stage HLLW solidification process using a “cold” crucible induction melter (CCIM) are considered in comparison with a one-stage vitrification process in a ceramic melter.This paper describes the features of a process and equipment for a two-stage HLLW solidification technology using a “cold” crucible induction melter (CCIM) and identifies the advantages compared to a one-stage ceramic melter. A two-stage pilot facility and the technical characteristics of the equipment are described using a once-through evaporator and cold-crucible induction melter currently operational at the IA.Mayak. facility in Ozersk, Russia. The results of pilot-plant tests with simulated HLLW to produce a phosphate glass are described. Features of the new mineral-like waste form matrices synthesized by the CCIM method are also described. Subject to further development, the CCIM technology is planned to be used to solidify all accumulated HLLW at Mayak – first to produce borosilicate glass waste forms and then mineral-like waste forms.
Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. 2.“Evaluation of Spent Fuel as a Final Waste Form,” Technical reports series, 1991, N 320, Vienna, IAEA, p. 81.
2. The fabrication and properties of Zr-O-F ceramics for the immobilization of Zircaloy nuclear waste
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献