High Level Liquid Waste Solidification Using a “Cold” Crucible Induction Melter

Author:

Demine Andrei V.,Krylova Nina V.,Polyektov Pavel P.,Shestoperov Igor N.,Smelova Tatyana V.,Gorn Valerii F.,Medvedev Gennadii M.

Abstract

ABSTRACTAt the present time the primary problem in a closed nuclear fuel cycle is the management of high level liquid waste (HLLW) generated by the recovery of uranium and plutonium from spent nuclear fuel. Long-term storage of the HLLW, even in special storage facilities, poses a real threat of ecological accidents. This problem can be solved by incorporating the radioactive waste into solid fixed forms that minimize the potential for biosphere pollution by long-lived radionuclides and ensure ecologically acceptable safe storage, transportation, and disposal. In the present report, the advantages of a two-stage HLLW solidification process using a “cold” crucible induction melter (CCIM) are considered in comparison with a one-stage vitrification process in a ceramic melter.This paper describes the features of a process and equipment for a two-stage HLLW solidification technology using a “cold” crucible induction melter (CCIM) and identifies the advantages compared to a one-stage ceramic melter. A two-stage pilot facility and the technical characteristics of the equipment are described using a once-through evaporator and cold-crucible induction melter currently operational at the IA.Mayak. facility in Ozersk, Russia. The results of pilot-plant tests with simulated HLLW to produce a phosphate glass are described. Features of the new mineral-like waste form matrices synthesized by the CCIM method are also described. Subject to further development, the CCIM technology is planned to be used to solidify all accumulated HLLW at Mayak – first to produce borosilicate glass waste forms and then mineral-like waste forms.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference9 articles.

1. 2.“Evaluation of Spent Fuel as a Final Waste Form,” Technical reports series, 1991, N 320, Vienna, IAEA, p. 81.

2. The fabrication and properties of Zr-O-F ceramics for the immobilization of Zircaloy nuclear waste

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3