Abstract
ABSTRACTExperimental alteration results are presented in which a French SON 68 (R7T7-type) nuclear containment glass specimen was first altered under static conditions for 600 days at an S/V ratio of 5000 m−1 before transferring it to pure water. The experiment was designed to assess the diffusion barrier properties of the gel formed during the preliminary alteration phase. Contrary to predictions by kinetic models based only on chemical affinity, the renewed alteration of the specimen in pure water was very limited. Measurements at close intervals showed that the maximum alteration rate under these conditions was 7 ×10−3 g·m−2d−1, or about r0/300, whereas a pristine glass coupon in contact with pure water is altered at r0.The renewed alteration behavior is attributed to partial (5–10%) dissolution of the existing gel, resulting in a slight degradation of its protective properties. Saturation conditions, at a different level than in the preliminary phase, were reached within a few days. The saturation of the solution with respect to silicon, generally interpreted as a glass/solution (Grambow) or gel/solution (Bourcier) equilibrium, is shown to depend not only on the alteration conditions, but also on the specimen leaching history, and is thus not an inherent glass property.This experiment confirms the idea that the gel formed under saturation conditions controls the kinetics of SON 68 glass alteration by means of a diffusion barrier effect. It also raises a number of issues concerning the concept of a “residual rate” and the possible relations between the quasi steady-state Si concentrations observed in solution and the protective properties of the gel.
Publisher
Springer Science and Business Media LLC
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献