Author:
Begg B.D.,Day R.A.,Brownscombe A.
Abstract
ABSTRACTAs the level of Pu4+ substituted on the Zr-site in CaZr1-xPuxTi2O7 zirconolite increased, from x=0.1 to 0.6, a series of structural transitions occurred from zirconolite-2M to zirconolite-4M and subsequently from zirconolite-4M to pyrochlore. The solid-solution limit for Pu4+ substituted on the Zr-site in zirconolite-2M was ~ 0.15 formula units. Zirconolite-4M was only stable over a narrow compositional range, centered about CaZr0.59Pu0.41Ti2O7, whilst the pyrochlore structure was stabilized with CaZr0.4Pu0.6Ti2O7 stoichiometry. The stability of the zirconolite polytypes is therefore sensitive to the average effective ionic size of the ions occupying the seven-coordinated Zr-site. The reduction in Pu from Pu4+ to Pu3+ destabilized the zirconolite-4M, producing a mixture of perovskite and possibly zirconolite-3T. The CaZr0.4Pu0.6Ti2O7 pyrochlore was also predominantly transformed to perovskite as a result of this reduction of Pu.
Publisher
Springer Science and Business Media LLC
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献