Synthesis and Study of 239Pu-Doped Ceramics Based on Zircon, (Zr,Pu)Sio4, and Hafnon, (Hf,Pu)SiO4

Author:

Burakov B.E.,Anderson E.B.,Zamoryanskay M.V.,Yagovkina M.A.,Strykanova E.E.,Nikolaeva E.V.

Abstract

ABSTRACTZircon, ZrSiO4, as well as its Hf-analogue hafnon, HfSiO4, have been proposed for use as durable Pu host phases for the immobilization of weapons grade Pu and other actinides. Four samples of Pu-doped ceramics based on the zircon and hafnon structures were synthesized through sintering in air using precursors containing 5-6 and 10 wt% 239Pu. Synthesized ceramic samples were studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), microprobe method, MCC-1 leach test at 25 and 90°C. Inclusions of separated a PuO2phase in the matrix of zircon-based ceramic and presumably, (Pu,Hf)O2 phase in the hafnon-based ceramic were observed for samples obtained from precursors doped with 10 wt% Pu. No separated Pu-phases in significant amounts were identified in the matrices of both ceramics obtained from the precursors doped with 5-6 wt% Pu. It was found that normalized Pu mass losses (without correction on ceramic porosity) for samples doped with 10 wt% Pu which contain separated inclusions of PuO2 or (Pu,Hf)O2 after 14/28 days were approximately (in g/m2) - for zircon: 0.2/0.2 - at 90°C and 0.03/0.04 - at 25°C and for hafnon: 0.02/0.04 - at 90°C and 0.01/0.01 - at 25°C. The losses of Pu from samples doped with 5-6 wt% are 1-2 order of magnitude less. It was suggested that optimal amount of Pu which could be incorporated by zircon and hafnon lattices does not exceed 7 wt%. An important additional conclusion is that Pu- doped ceramic based on zircon or hafnon can be successfully fabricated excluding hot pressing method.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3