Mixed-Metal Templated Phosphate Phases

Author:

Nenoff Tina M.,Jackson Nancy B.,Harrison William T. A.,Thoma Steven G.,Kohler Steven D.

Abstract

AbstractIn an effort to direct the structure formation and subsequently the catalytic properties of novel materials, both organic molecules and transition metals have been systematically incorporated into zinc phosphate materials, and various transition metals into zirconium phosphate materials. The resultant phases in the Zn/P experiments are determined not by the organic template, but by the type and stoichiometric amount of metal incorporated and by the organic template's anion. Furthermore, only one of the phases, a Ni/Zn/P, shows any acidic catalytic behavior. Similarly, the transition metals incorporated in stoichiometric amounts into the catalytically active novel zirconium phosphate are highly structure directing. Their presence inhibits the formation of the phosphate phase, instead promoting the formation of tetragonal ZrO2. The catalytic activity of the products are greatly diminished from the baseline material.The synthesis and characterization methods for each phase will be presented. Characterization techniques employed include single-crystal and powder X-ray diffraction, magnetic susceptibility, thermal analysis, DCP and FTIR.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference7 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3