A simple method for evaluating elastic modulus of thin films by nanoindentation

Author:

Wei Zhongxin,Zhang Guoping,Chen Hao,Luo Jian,Liu Ranran,Guo Shengmin

Abstract

A simple empirical method that extracts the elastic moduli of both thin films and the underlying substrates is proposed and validated by both new nanoindentation experiments and published data. Deconvolution of thin film’s elastic properties from the substrate is achieved by statistical estimation, where a simple function relating the elastic moduli of the thin film and substrate to the film-substrate composite modulus is used to fit the experimental data plotted against the logarithmic indentation depth normalized by film thickness. Experimental data from a wide range of soft and hard films on substrate were used to demonstrate the deconvolution and validate the method. The estimated elastic moduli of thin films and substrates agree well with their corresponding standard values or values obtained by other methods. The advantages of this method are discussed, and recommendations are made on how to design experiments to obtain reliable data for this method.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3