Direct mapping of deformation in punch indentation and correlation with slip line fields

Author:

Murthy T.G.,Madariaga J.,Chandrasekar S.

Abstract

Deformation field parameters in plane-strain indentation of a perfectly plastic solid with a punch have been mapped using particle image velocimetry, a correlation-based image analysis technique. Measurements of velocity and strain rate over a large area have shown that the deformation resembles that of the slip line field of Prandtl. A zone of dead metal is found to exist underneath the indenter adjoining which is a transition region of material flow similar to the centered-fan region in the slip line field. Shear bands demarcate the boundaries of these deformation regions. The observations suggest that a representative strain rate may be assigned to the indentation. By integrating the strain rate field along particle trajectories, the strains in the indentation region have been estimated. The strain values are seen to be large, 0.5 to 4, over a region extending to about twice the indenter half-width. A pocket of large strain, ∼4, is found to exist close to the edge of the indenter–specimen contact. Prandtl’s slip line field is modified based on the observations and used to estimate the strain field. The measurements of the deformation parameters are found to compare mostly favorably with the predictions of the slip line field and prior observations of indentation. The implications of these findings for analysis and interpretation of indentation hardness are briefly discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3