Current-induced growth of P-rich phase at electroless nickel/Sn interface

Author:

Yang Qiliang,Shang Panju,Guo Jing D.,Liu Zhiquan,Shang Jian-Ku

Abstract

The role of high current stressing during growth of the P-rich phase at the electroless Ni/Sn interface was examined by transmission electron microscopy. Prior to current stressing, two layers of Ni12P5, columnar Ni12P5 and noncolumnar Ni12P5, were formed after soldering. Upon electric stressing, the two layers of P-rich phase showed opposite growth patterns at the two opposing electrode interfaces. At the cathode, columnar growth of the P-rich phase was greatly enhanced while growth of the noncolumnar layer was inhibited. By contrast, the opposite was found at the anode where the current stressing promoted the noncolumnar growth but suppressed the growth of the columnar layer. Such a strong polarity effect resulted from directional electromigration of the key reaction species, nickel, to and from the interfacial reaction fronts. As a result of the difference in reaction mechanism, overall growth of the P-rich phase was much faster at the cathode during current stressing.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3