Microstructure and secondary phase segregation correlation in epitaxial/oriented ZnO films with unfavorable Cr dopant

Author:

Saraf L.V.,Zhu Z.H.,Wang C.M.,Engelhard M.H.

Abstract

Low solubility dopant-host systems are well suited to study secondary phase segregation-microstructure dependence. We discuss the effect of microstructure on secondary phase segregation in epitaxial/oriented ZnO thin films with Cr as an unfavorable dopant (Cr:ZnO). Since differences in thin film microstructure are a function of the substrate and its orientation, simultaneous chemical vapor depositions were carried out on single crystals of Si (100), c-axis oriented Al2O3 (c-ALO), and r-axis oriented Al2O3 (r-ALO) resulting in epitaxial film growth on r-ALO and c-axis oriented film growth on Si and c-ALO, with a difference in vertical grain boundary density. To enhance the analysis sensitivity to the microstructure difference, the thickness of Cr:ZnO films was maintained at ∼50 nm. High-resolution transmission electron microscopy (HRTEM) analysis indicates uniform stress distribution in Cr:ZnO grown on r-ALO. Surface sensitive x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) techniques were utilized for analysis of the data. We observe that a higher grain boundary density and the presence of an amorphous layer at the interface for films grown on Si(100) single crystal led to interfacial Cr-based secondary phase segregation as opposed to lower grain boundary density and epitaxial films grown on c-ALO and r-ALO single crystals, respectively. We also discuss the effects of trace carbon solubility on the film microstructure/secondary phase segregation relationship.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ZnO and Related Materials;Metalorganic Vapor Phase Epitaxy (MOVPE);2019-08-30

2. An approach for determining chemical composition of zinc oxide films with carbon-containing contamination at the surface;Journal of Materials Science;2015-09-03

3. Bulk Migration of Ni/NiO in Ni–YSZ during Reducing Conditions;Journal of The Electrochemical Society;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3