Corrosion products on biomedical magnesium alloy soaked in simulated body fluids

Author:

Xin Yunchang,Huo Kaifu,Hu Tao,Tang Guoyi,Chu Paul K

Abstract

Magnesium alloys are potential materials in biodegradable hard tissue implants. Their degradation products in the physiological environment not only affect the degradation process but also influence the biological response of bone tissues. In the work reported here, the composition and structure of the corrosion product layer on AZ91 magnesium alloy soaked in a simulated physiological environment, namely simulated body fluids (SBFs), are systematically investigated using secondary electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and in situ monitoring of the corrosion morphology. Our results show that the corrosion product layer comprises mainly amorphous magnesium (calcium) phosphates, magnesium (calcium) carbonates, magnesium oxide/hydroxide, and aluminum oxide/hydroxide. The magnesium phosphates preferentially precipitate at obvious corrosion sites and are present uniformly in the corrosion product layer, whereas calcium phosphates nucleate at passive sites first and tend to accumulate at isolated and localized sites. According to the cross sectional views, the corrosion product layer possesses a uniform structure with thick regions several tens of micrometers as well as thin areas of several micrometers in some areas. Localized corrosion is the main reason for the nonuniform structure as indicated by the pan and cross-sectional views. The results provide valuable information on the cytotoxicity of magnesium alloys and a better understanding on the degradation mechanism of magnesium alloys in a physiological environment.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3