Author:
Kamble S.N.,Kubair D.V.,Ramamurty U.
Abstract
The spherical indentation strength of a lead zirconate titanate (PZT) piezoelectric ceramic was investigated under poled and unpoled conditions and with different electrical boundary conditions (arising through the use of insulating or conducting indenters). Experimental results show that the indentation strength of the poled PZT is higher than that of the unpoled PZT. The strength of a poled PZT under a conducting indenter is higher than that under an insulating indenter. Poling direction (with respect to the direction of indentation loading) did not significantly affect the strength of material. Complementary finite element analysis (FEA) of spherical indentation of an elastic, linearly coupled piezoelectric half-space is conducted for rationalizing the experimental observations. Simulations show marked dependency of the contact stress on the boundary conditions. In particular, contact stress redistribution in the coupled problem leads to a change in the fracture initiation, from Hertzian cracking in the unpoled material to subsurface damage initiation in poled PZT. These observations help explain the experimental ranking of strength the PZT in different material conditions or under different boundary conditions.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献