Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417

Author:

Ma Xiaoping,Li Yingju,Yang Yuansheng

Abstract

The grain refinement effect of a pulsed magnetic field on superalloy K417 was studied. The experimental results show that fine equiaxed grains are acquired with proper thermal control under the pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and the melt superheating. The refinement effect of the pulsed magnetic field is attributed to the dissociation of nuclei from the mold wall by melt vibration and the subsequent dispersion of nuclei by melt convection. The Joule heat and the melt convection caused by the pulsed magnetic field may defer the formation of solidified shell, which prolongs the continuous refinement process. The decrease of melt cooling rate reduces the number of nuclei produced on the mold wall but prolongs the duration for the nuclei to depart from the mold wall and disperse in the melt, which enhances the refinement effect of the pulsed magnetic field. The increase of melt superheating lessens the survival probability of the nuclei in the melt, which weakens the refinement effect of the pulsed magnetic field.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference20 articles.

1. Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel

2. Nucleation of the equiaxed zone in cast metals;Southin;Trans. TMS,1976

3. Effects of electromagnetic vibrations on the microstructure of continuously cast aluminum alloys;Vives;Mater. Sci. Eng.,1993

4. Origin of the equiaxed crystals in castings;Ohno;Trans. ISIJ,1971

5. Microstructural refinement process of pure magnesium by electromagnetic vibrations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3