Crystal structure, electrical, and thermal properties of Ca0.5Th0.5VO4

Author:

Patwe S.J.,Nagabhusan Achary S.,Tyagi Avesh K.

Abstract

Ca0.5Th0.5VO4 was prepared by a solid-state reaction of component oxides and characterized by powder x-ray diffraction (XRD) at ambient and higher temperatures and impedance spectroscopy. Crystal structure was refined by Rietveld refinements from powder XRD data. At room temperature, Ca0.5Th0.5VO4 has a zircon-type tetragonal (I41/amd) lattice with unit cell parameters: a = 7.2650(1) and c = 6.4460(1) Å. Despite the large charge difference, Ca2+ and Th4+ are statistically distributed over a single site. The crystal structure of Ca0.5Th0.5VO4 is built from the (Ca/Th)O8 (bisdisphenoid) and VO4 tetrahedra. The in situ high-temperature XRD studies on Ca0.5Th0.5VO4 revealed anisotropic thermal expansion behavior with coefficients of thermal expansion αc = 10.96 × 10−6/°C and αa = 5.32 × 10−6/°C. The impedance measurements carried out in the temperature range from ambient to 800 °C indicate semiconducting behavior with appreciable ionic conductivity above 400 °C. The activation energy obtained from the temperature-dependent AC conductivity data is ∼1.37 eV. In wider range of frequencies and temperatures, the relative permittivity of approximately 50 to 60 is observed for Ca0.5Th0.5VO4.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3