Author:
Gruber Patric A.,Arzt Eduard,Spolenak Ralph
Abstract
Current semiconductor technology demands the use of compliant substrates for flexible integrated circuits. However, the maximum total strain of such devices is often limited by the extensibility of the metallic components. Although cracking in thin films is extensively studied theoretically, little experimental work has been carried out thus far. Here, we present a systematic study of the cracking behavior of 34- to 506-nm-thick Cu films on polyamide with 3.5-to 19-nm-thick Ta interlayers. The film systems have been investigated by a synchrotron-based tensile testing technique and in situ tensile tests in a scanning electron microscope. By relating the energy release during cracking obtained from the stress-strain curves to the crack area, the fracture toughness of the Cu films can be obtained. It increases with Cu film thickness and decreases with increasing Ta film thickness. Films thinner than 70 nm exhibit brittle fracture, indicating an increasing inherent brittleness of the Cu films.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献