Author:
Han Yong,Zhang Lan,Lu Jian,Zhang Wengting
Abstract
The thermal stability and corrosion behavior of the nanostructured layer on commercially pure zirconium, produced by surface mechanical attrition treatment (SMAT), were investigated. It is indicated that the nanograined Zr is stable at annealing temperatures up to 650 °C, above which significant grain growth occurs and the grain size shows parabolic relationship with annealing time. The activation energy for grain growth of the nanograined Zr is 59 kJ/mol at 750–850 °C, and the grain growth is dominated by grain-boundary diffusion. The as-SMATed nanograined Zr exhibits higher corrosion resistance than the 550–750 °C annealed SMATed Zr and the unSMATed coarse-grained Zr. It is indicated that the corrosion resistance of Zr tends to increase with the reduction of grain size, which is related to the dilution of segregated impurities at grain boundaries due to grain refinement and the formation of passive protection film.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献