Author:
Zhang Ling,Ohmura Takahito,Emura Satoshi,Sekido Nobuaki,Yin Fuxing,Min Xiaohua,Tsuzaki Kaneaki
Abstract
Nanoindentation measurements of the grain interiors of an ultra-fine grained (UFG) pure Al produced by equal channel angular pressing were taken to evaluate the contribution of the matrix strength. Specimens were subjected to 0, 1, 2, 4, and 8 passes at ambient temperature. The nanohardness of the deformed samples was always higher than that of the undeformed sample 0P in the range of the indentation depth that was investigated, suggesting a strengthening of the matrix in the UFG Al. The increase in hardness that was contributed by the matrix to the macroscopic scale hardness was significantly large in about 40% of the deformed samples. The microstructural characterization and the deformation response analysis with the pop-in event during indentation suggested that the strengthening of the matrix originated from dislocation strengthening and some other presumable factors in the grain interiors.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献