Author:
Van Winkle David H.,Gurung Jit,Biggers Rand
Abstract
ABSTRACTThe thermal transport across a thick (0.66 cm) liquid crystal cell has been measured versus applied ac voltage and frequency. These measurements are correlated with the optically observed onset of flow and turbulence in cells as identical as practicable to those used for the thermal transport measurements. In addition, the measurements are compared with reported observations in thin cells. The thermal transport across the liquid crystal is characterized by an effective thermal conductivity Kf. It was found that Kf increases with increasing frequency, at constant voltage, to a maximum enhancement at about 40 Hz at room temperature. Optical observations on thick cells indicate that dynamic columnar domains of flowing liquid crystal are the primary mode of heat transport, as determined by correlating the structure and characteristic lifetime of such domains as a function of voltage and frequency. Optical observations at low voltages suggest that Williams Domains do not exist in these thick cells, and that all observed responses are functions of electric field strength, not applied voltage (as in thin Williams Domain cells).
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献