Interfacial Microstructure Evolution Between Eutectic SnAgCu Solder and Al/Ni(V)/Cu Thin Films

Author:

Li M.,Zhang F.,Chen W. T.,Zeng K.,Tu K. N.,Balkan H.,Elenius P.

Abstract

The evolution of interfacial microstructure of eutectic SnAgCu and SnPb solders on Al/Ni(V)/Cu thin films was investigated after various heat treatments. In the eutectic SnPb system, the Ni(V) layer was well protected after 20 reflow cycles at 220 °C. In the SnAgCu solder system, after 5 reflow cycles at 260 °C, the (Cu,Ni)6Sn5 ternary phase formed and Sn was detected in the Ni(V) layer. After 20 reflow cycles, the Ni(V) layer disappeared and spalling of the (Cu,Ni)6Sn5 was observed, which explains the transition to brittle failure mode after ball shear testing. The different interfacial reactions that occurred in the molten SnAgCu and SnPb systems were explained in terms of different solubilities of Cu in the two systems. The dissolution and formation of the (Cu,Ni)6Sn5phase were discussed on the basis of a Sn–Ni–Cu phase diagram. In the solid-state aging study of the SnAgCu samples annealed at 150 °C for up to 1000 h, the Ni(V) layer was intact and the intermetallic compound formed was Cu6Sn5 and not (Cu,Ni)6Sn5, which is the same as was observed for the eutectic SnPb system.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference26 articles.

1. Lead-free Solders in Microelectronics

2. Thermodynamic study of phase equilibria in the Pb-Sn-Sb system

3. IPC Roadmap, A Guide for Assembly of Lead-free Electronics (Draft IV, Northbrook, IL, Nov. 1999).

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3