Author:
Shen Zhijian,Peng Hong,Nygren Mats
Abstract
The abnormal grain growth in α–sialon ceramics was investigated. The preparations had stoichiometric compositions on the oxygen-rich phase boundary, and they were stabilized by Y, Nd, Sm, Dy, and Yb, respectively. Specimens were prepared from α–Si3N4 as precursor powder by applying conventional hot pressing and a novel rapid consolidation process, namely spark plasma sintering (SPS). Single-phase α–sialon ceramics with in situ reinforced bimodal microstructure, i.e., large elongated grains embedded in a matrix consisting of small equiaxed grains, were obtained above 1750 °C in all systems compacted by SPS and above 1800 °C in systems stabilized by Nd and Sm but not Dy, Y, or Yb by a two-step hot-pressing procedure. It was observed that the formation of abnormally grown α–sialon grains was strongly temperature-dependent, indicating that it was encouraged by the formation of a transient liquid phase that stimulated the dissolution of any remaining nitride precursors and early formed small α–sialon grains and sequentially facilitated supersaturation by the α–sialon constituents. The presence of elongated grains improves fracture resistance in the obtained materials.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献