Effect of Thermal Treatment on the Photocatalytic Activity of TiO2 Coatings for Photocatalytic Oxidation of Benzoic Acid

Author:

Chan Alex H. C.,Porter John F.,Barford John P.,Chan Chak K.

Abstract

The effects of thermal treatment on the properties and photoactivities of TiO2 catalysts supported on 316 stainless steel plates were examined. Degussa P-25 was immobilized on 316 stainless steel plates by electrophoretic deposition. These TiO2-coated plates were heated at 473, 673, and 873 K for 1 h. The photoactivities of these TiO2 coatings were determined based on the removal of benzoic acid as the model pollutant. In particular, the photoactivity decreased by 52% in the sample heated at 873 K compared with the unheated sample. The results of x-ray diffraction showed that the crystallinity and the crystallite sizes of the catalysts supported on the plates did not significantly vary with increasing temperature over the range examined. Negligible change in the catalyst phase (the anatase-to-rutile ratio) was indicated from x-ray diffraction and micro-Raman spectroscopy. However, it was found that the Brunauer–Emmett–Teller surface area of the scraped catalysts heated at 873 K decreased by nearly 13% compared with the unheated sample. In addition, scanning electron microscopy/energy dispersive x-ray and x-ray photoelectron spectroscopy analyses also detected the presence of Fe3+ ions at the surface of the supported catalysts heated at 873 K. The drop in surface area and the presence of Fe3+ ions at the catalyst surface, which were considered to function as electron–hole recombination centers, were possible factors leading to the drop in the photoactivity exhibited by the sample. A lower temperature for thermal treatment such as 473 K was proposed to ensure the coating stability and the catalyst photoactivity.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3