Evidence For Trap-Conversion Induced Instability In Amorphous Silicon

Author:

Dalal Vikram L.,Sharma Puneet,Aziz Abdul

Abstract

AbstractIt has been shown recently that there are two distinct types of recovery during annealing of amorphous Silicon after degradation due to light soaking. It has been postulated that the two different kinetics of annealing point to the existence of two different types of states, with perhaps one state being charged dangling bonds and the other state being neutral dangling bonds. To see if two kinds of states exist, in this paper, we study the kinetics of degradation within the first 100 seconds, and also study the entire absorption curve at all degradation times. An analytical model is derived for early time degradation based on the conversion of a D- state into a neutral dangling band by absorption of a light generated ( the trap-to-dangling bond conversion model of Adler) and the experimental data of degradation versus light intensity fit the predictions of the model very well. The model also predicts that the Adler-type negatively charged defect states, which have a negative correlation energy, upon conversion will transform into Do states at a higher energy, and therefore, there should be a decrease in absorption corresponding to states closer to the valence band, and an increase in absorption corresponding to states near the mid-gap. For the films where such D- states are deliberately introduced by using a small oxygen (a donor atom) leak, we see strong evidence for such a behavior in absorption, with a decrease in the 1.3-1.4 eV photon energy range, and an increase in the 1.1 eV photon energy range. The increase in Do corresponds well with the decrease in photo-conductivity, even at the earliest times.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3