Role of the Cholesteric Phase In The Formation Of Twisted Smectic Structures

Author:

Suh S. W.,Campbell A. L.,Patel J. S.

Abstract

ABSTRACTThe smectic structure obtained by cooling the material from the cholesteric phase often produces different structures in the twisted ferroelectric configuration, which depends not only on the nature of the material, but also on the rate of cooling. In this paper, we have investigated the origin of this behavior and have concluded that the twist in the cholesteric phase is responsible for the apparent unpredictability. Furthermore, we show that for a given chirality of material and the same rubbing condition at the surface, two possible smectic domains are produced. While the electro-optic properties of both these domains show gray-scale capabilities, these domains have different optical properties. This comparison was made possible by using a specially prepared sample in which we rubbed two glass plates, each with two areas in which the rubbing direction was both horizontal and vertical. Using this sample, we have been able to show that the presence of pitch inversion close to the cholesteric to smectic phase transition is the apparent reason the results can not be reproduced. Furthermore, our experiments clarify the importance of sample cooling rate. If rapidly cooled during the fabrication from the cholesteric to the smectic phase, the sample retains a memory of the non-equilibrium pitch, providing us with a means to capture the desired pitch. This important discovery will aid us in modifying the material as well as carefully tailoring its pitch in order to insure that cooling of the cholesteric material leads naturally to the twisted smectic structure.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3