High Temperature Post-deposition Annealing Studies of Layer-by-layer (LBL) Deposited Hydrogenated Amorphous Silicon Films

Author:

Tong Goh Boon,Gani Siti Meriam Ab.,Muhamad Muhamad Rasat,Rahman Saadah Abdul

Abstract

AbstractHigh temperature post-deposition annealing studies were done on hydrogenated amorphous silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) using the layer-by-layer (LBL) deposition technique. The films were annealed at temperatures of 400 °C, 600 °C, 800 °C and 1000 °C in ambient nitrogen for one hour. Auger electron spectroscopy (AES) depth profiling results showed that high concentration of O atoms were present at the substrate/film interface and at film surface. Very low concentration of O atoms was present separating silicon layers at regular intervals from the film surface and the substrate due to the nature of the LBL deposition and these silicon oxide layers were stable to high annealing temperature. Reflectance spectroscopy measurements showed that the onset of transformation from amorphous to crystalline phase in the LBL a-Si:H film structure started when annealed at temperature of 600 °C but the X-ray diffraction (XRD) and Raman scattering spectroscopy showed that this transition only started at 800 °C. The films were polycrystalline with very small grains when annealed at 800 °C and 1000 °C. Fourier transform infrared spectroscopy (FTIR), measurements showed that hydrogen was completely evolved from the film at the on-set of crystallization when annealed at 800 °C. The edge of the reflectance fringes shifted to longer wavelength decrease in hydrogen content but shifted to shorter wavelength with increase in crystallinity.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3