Carrier drift-mobilities and solar cell models for amorphous and nanocrystalline silicon

Author:

Schiff Eric A

Abstract

AbstractHole drift mobilities in hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) are in the range of 10-3 to 1 cm2/Vs at room-temperature. These low drift mobilities establish corresponding hole mobility limits to the power generation and useful thicknesses of the solar cells. The properties of as-deposited a-Si:H nip solar cells are close to their hole mobility limit, but the corresponding limit has not been examined for nc-Si:H solar cells. We explore the predictions for nc-Si:H solar cells based on parameters and values estimated from hole drift-mobility and related measurements. The indicate that the hole mobility limit for nc-Si:H cells corresponds to an optimum intrinsic-layer thickness of 2-3 μm, whereas the best nc-Si:H solar cells (10% conversion efficiency) have thicknesses around 2 μm.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference33 articles.

1. Trap-controlled dispersive transport and exponential band tails in amorphous silicon

2. 30This expression in square brackets differs slightly from eq. (4) of ref. [8] because that reference implicitly assumed that the product NVbT is temperature-independent. This assumption requires that the temperature-dependence of bT compensates that of NV, which seems arbitrary. The fittings to drift-mobilities are not substantially affected; this can be seen in Fig. 6, where the fitting Zhu03 seems satisfactory with the original parameters.

3. 29Most experimental papers cited here calculate the drift-mobility assuming that the mean displacement L at the transit-time is half the sample thickness d (L = d/2) [9]. Some experimenters use the older expression L = d (cf. [18]), which yields mobilities that are twice as large.

4. Hydrogen dilution profiling for hydrogenated microcrystallinesilicon solar cells

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3