Transmission Electron Microscopy Study of α-Decay Damage in Aeschynite and Britholite

Author:

Gong W. L.,Wang L. M.,Ewing R. C.,Chen L. F.,Lutze W.

Abstract

ABSTRACTThe aeschynite structure-type (Ce,Nd,La,Th,U,Ca)(Nb,Ti)2O6, and the rare-earth silicate apatite structure-type with the formula (Ce,La,Nd,Ca,Th)10(SiO4,PO4)6(O,F,OH)2 are important rare-earth and actinide host phases for high-level nuclear waste. Natural phases of these structure-types have calculated alpha-decay doses up to ∼1017 α-events/mg which have accumulated over hundreds of millions of years. Transmission electron microscopy has been used to study the microstructure of α-decay damage in aeschynite and britholite. Electron diffraction analysis of natural aeschynite revealed that minerals originally crystalline gradually lost their crystallinity with increasing alpha-decay doses. Helium bubbles were found in the aeschynite which have accumulated up to ∼2×1016 α-events/mg. These bubbles may nucleate within collision cascades during a-decay damage. Electron irradiation has an enhanced rare-gas migration and the formation of larger bubbles. High-resolution electron microscopy (HRTEM) revealed that amorphization during accumulation of a-decay damage was from alpha-recoil nuclei collision cascades, in both the aeschynite and britholite.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference30 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on helium mobility in inorganic materials;Journal of Nuclear Materials;2014-02

2. Actinide host phases as radioactive waste forms;Structural Chemistry of Inorganic Actinide Compounds;2007

3. Phenomenological theory of the crystalline-to-amorphous phase transition during self-irradiation;Journal of Physics: Condensed Matter;2005-10-07

4. Ceramic Waste Forms for Excess Weapons Plutonium;The Environmental Challenges of Nuclear Disarmament;2000

5. Natural and Synthetic Minerals — Matrices (Forms) for Actinide Waste Immobilization;Minerals as Advanced Materials I

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3