Development of Top-Gate Nanocrystalline Si:H Thin Film Transistors

Author:

McDonald Jarrod,Dalal Vikram L.,Noack Max

Abstract

ABSTRACTWe report on the growth and fabrication of top gate thin film transistors at low temperatures in nanocrystalline Si:H. The nanocrystalline Si:H was deposited using a VHF-PECVD plasma process at 45 MHz in a diode reactor. The material was deposited from a mixture of silane and hydrogen at a temperature of 250-300°C. Higher temperatures resulted in a loss of hydrogen from the material. The properties of the nanocrystalline Si:H were studied using x-ray diffraction and Raman spectroscopy. The material showed a high ratio (3.8) between the crystalline and amorphous peaks in the Raman spectrum. X-ray diffraction data showed the films to be predominantly oriented in <111> direction, and the grain size estimated from Scherer's formula was in the range of 12-15 nm. The doping of the material could be changed by introducing ppm levels of Boron or Phosphorus. The as-grown material was generally n type. By adding controlled amounts of B, the material could be made p type. The devices made were n-channel MISFET's with p body. The n+ source and drain layers were made from amorphous Si:H. A systematic investigation of the appropriate oxide/nitride layer to be used was undertaken. The nitride layers were grown at 250-300°C using mixtures of silane and ammonia, with a high degree of dilution by helium. The presence of helium dilution, along with post-deposition passivation by a hydrogen plasma, was found to produce reproducible, low interface defect density nitride materials. Interface state densities were measured using capacitance spectroscopy at different frequencies and temperatures and found to be in the range of 4.5x1011/cm2-eV. The breakdown strength of the nitride was measured and found to be 4 MV/cm. Proof-of-concept TFT devices were fabricated using reactive ion etching. The threshold voltage was in the range of 13-15 V, and the on/off ratio was in the range of 103.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3