Buffer-layer Effect on Mixed-Phase Cells Studied by Micro-Raman and Photoluminescence Spectroscopy

Author:

Hilchey Andrea,Lawyer Chris,Wang Keda,Han Daxing,Yan Baojie,Yue Guozhen,Yang Jeffrey,Guha Subhendu

Abstract

ABSTRACTWe use micro-Raman and photoluminescence (PL) spectroscopy to study the effects of an a-Si:H buffer layer at the i/p interface of the mixed-phase silicon solar cells. We find that the signature of the crystalline 520 cm−1 mode still appears on the Raman spectrum for the cells with a 100 Å thick a-Si:H buffer layer; but it completely disappears for cells with a 500 Å thick a-Si:H buffer layer. At 80 K, the PL spectral lineshape reflects the features of the electronic states in the band tails. The characteristics of the PL spectra of the mixed-phase cells are a narrower main band than the standard a-Si:H band and an extra low energy band from the grain boundary region. As the thickness of the a-Si:H buffer layer increases, the PL main band becomes broader, and the low energy band is depressed. We find that, after light soaking, the PL main band is slightly broadened for the cells with no a-Si:H buffer layer, almost no change for the cells with a 100 Å thick buffer layer, and a remarkable decrease in total PL intensity for the cells with a 500 Å thick buffer layer. In addition, the PL intensity of the defect band increases after light soaking for the cells with a 500 Å thick buffer layer, where light-induced defect generation in the a-Si:H buffer layer masks the changes in the mixed-phase intrinsic layer. The Raman and PL results are consistent with previous observations of the effect of an a-Si:H buffer layer on the performance and metastability against light soaking for mixed-phase solar cells.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3