Cationic Corrosion Inhibitors for Alkaliborosilicate Glass

Author:

Zwicky H.U.,Graber TH.,Grauer R.,Restani R.

Abstract

ABSTRACTThe dissolution behaviour of two alkali borosilicate glasses has been investigated at 90°C in the presence of potential corrosion inhibitors. The added materials were selected on the basis of surface chemistry considerations: Since the dissolution rate of silicate solid phases in alkaline solutions increases with growing negative surface charge, it should be expected that sorbing cations reduce the reaction rates. Due to the formation of insoluble hydroxides and silicates and to the dominance of neutral or negatively charged hydroxo complexes in the pH range of interest, the selection of potential inhibitors is very restricted.The precipitated hydroxides of Al, Zn, Cd and Pb were chosen as the solid phases. Compared with the experiments in pure water, glass dissolution is enhanced in presence of Al(OH)3 and Zn(OH)2. The concentration of the aqua ions is too low for an inhibiting effect. Sorption of silicic acid on the hydroxide accelerates the glass dissolution. Addition of PbO had a strong inhibiting effect in a 28 days experiment. At longer times an insoluble lead silicate is formed and thereby the glass dissolution rate is increased. Cd on the other hand is still effective as an inhibitor after 365 days.Based on the present results, the possibility of using glass corrosion inhibitors in a repository is considered not to be worthwhile.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference11 articles.

1. Inhibition of Nuclear Waste Glass Leaching by Chemisorption

2. 8. Materials Characterization Center, Nuclear Waste Materials Handbook, Vol. 1, Test Methods, DOE/TIC- 11400, Pacific Northwest Laboratory, Richland, Washington (1981).

3. 9. Gmelins Handbuch der anorganischen Chemie, 8. Auflage, Blei Teil C Lieferung 2, System-Nummer 47, p. 692 (Verlag Chemie GmbH, Weinheim/Bergstr., 1969).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3