Chemically Assisted Ion Beam Etching (CAIBE)- a New Technique for TEM Specimen Preparation of Materials

Author:

Alani Reza,Jones Joseph,Swann Peter

Abstract

ABSTRACTChemically assisted ion beam etching (CAIBE) is widely practiced in the semiconductor industry. In the electron microscopy field, the CAIBE technique offers a new method for preparing specimens that are difficult to make by conventional inert gas milling techniques, e.g. indium containing type III-V compound semiconductors. CAIBE employs a collimated, molecular beam of a reactive species, e.g. iodine in combination with a conventional inert gas fast atom beam for thinning TEM specimens. CAIBE should not be confused with reactive ion beam etching (RIBE) which takes a chemically active species (e.g. iodine) and converts it into a beam of fast ions directed at the sample. CAIBE has three major advantages over (RIBE): i) corrosion of the ion gun components does not occur, ii) much smaller quantities of reactive gas are required and hence pump maintenance and pollution problems are minimized, iii) a wider range of chemicals may be used. Superior results are obtained if CAIBE is done on only one side of the specimen at a time. This is achieved using a new type of specimen holder post which enables very low angle milling and minimizes specimen contamination by sputtering from the holder. This new technique is described and results from iodine CAIBE milling, iodine RIBE milling and argon ion milling are compared for InP, InSb and GaAs as well as metals like tungsten. Also, the beneficial effects of very low angle (∼1°) argon ion milling in preparing specimens of silicide containing Si based IC wafers is reported.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference10 articles.

1. 2. GATAN Model 600 DuoMill Instruction Manual, (1989)

2. The preparation of cross-section specimens for transmission electron microscopy

3. 10. Remy H. , ”Treatise on Inorganic Chemistry”, Elsevier Pub. Co., 175 (1956)

4. The dislocation distribution near the surface of deformed copper

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3