Abstract
Abstract
The physical vapor transport (PVT) crystal growth process of 4H-SiC wafers is typically accompanied by the occurrence of a large variety of defect types such as screw or edge dislocations, and basal plane dislocations. In particular, screw dislocations may have a strong negative influence on the performance of electronic devices due to the large, distorted or even hollow core of such dislocations. Therefore, analyzing and understanding these types of defects is crucial also for the production of high-quality semiconductor materials. This work uses automated image analysis to provide dislocation information for computing the stresses and strain energy of the wafer. Together with using a genetic algorithm this allows us to predict the dislocation positions, the Burgers vector magnitudes, and the most likely configuration of Burgers vector signs for the dislocations in the wafer.
Graphical abstract
Funder
Deutsche Forschungsgemeinschaft
Forschungszentrum Jülich GmbH
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献