The influence of microstructural orientation on fracture toughness in (V, Al)N and (V, Al)(O, N) coatings as measured by microcantilever bending

Author:

Schoof Markus R.ORCID,Karimi Aghda S.,Kusche C. F.,Hans M.,Schneider J. M.,Korte-Kerzel S.,Gibson J. S. K.-L.

Abstract

AbstractSince protective transition metal (oxy)nitride coatings are widely used, understanding of the mechanisms linking microstructure to their fracture behaviour is required to optimise wear resistance, while maintaining fracture toughness. To assess this interconnection, beam bending was performed using microcantilevers oriented parallel and at 90° to the growth direction. Furthermore, the tests were applied to favour normal bending and shear fracture. Coatings were synthesised by both direct current magnetron sputtering (DCMS) as well as high power pulsed magnetron sputtering (HPPMS). Here, we show that the fracture toughness depends on the alignment of the grains and loading directions. Furthermore, an improved fracture toughness was found in coatings produced by HPPMS, when microstructural defects, such as underdense regions in DCMS deposited coatings can be excluded. We propose indices based on fracture and mechanical properties to rank those coatings. Here, the HPPMS deposited oxynitride showed the best combination of mechanical properties and fracture toughness. Graphical abstract Principle of measuring the effects of microstructure and process route on the fracture toughness via microcantilever bending.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3