Deformation behaviour of ion-irradiated FeCr: A nanoindentation study

Author:

Song KayORCID,Yu HongbingORCID,Karamched PhaniORCID,Mizohata KenichiroORCID,Armstrong David E. J.ORCID,Hofmann FelixORCID

Abstract

Abstract Understanding the mechanisms of plasticity in structural steels is essential for the operation of next-generation fusion reactors. This work on the deformation behaviour of FeCr, focusses on distinguishing the nucleation of dislocations to initiate plasticity, from their propagation through the material. Fe3Cr, Fe5Cr, and Fe10Cr were irradiated with 20 MeV Fe3+ ions at room temperature to doses of 0.008 dpa and 0.08 dpa. Nanoindentation was then carried out with Berkovich and spherical indenter tips. Our results show that the nucleation of dislocations is mainly from pre-existing sources, which are not significantly affected by the presence of irradiation defects or Cr%. Yield strength, an indicator of dislocation mobility, increases with irradiation damage and Cr content, while work hardening capacity decreases mainly due to irradiation defects. The synergistic effects of Cr and irradiation damage in FeCr appear to be more important for the propagation of dislocations than for their nucleation. Graphical abstract

Funder

H2020 European Research Council

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3